how generator works...

India
December 9, 2006 4:11am CST
i wanna know the logic
2 responses
• India
9 Dec 06
A machine in which mechanical energy is converted to electrical energy. Generators are made in a wide range of sizes, from very small machines with a few watts of power output to very large central-station generators providing 1000 MW or more. All electrical generators utilize a magnetic field to produce an output voltage which drives the current to the load. The electric current and magnetic field also interact to produce a mechanical torque opposing the motion supplied by the prime mover. The mechanical power input is equal to the electric power output plus the electrical and mechanical losses. Generators can be divided into two groups, alternating current (ac) and direct current (dc). Each group can be subdivided into machines that use permanent magnets to produce the magnetic field (PM machines) and those using field windings. A further subdivision relates to the type of prime mover and the generator speed. Large generators are often driven by steam or hydraulic turbines, by diesel engines, and sometimes by electric motors. Generator speeds vary from several thousand rotations per minute for steam turbines to very low speeds for hydraulic or wind turbines. See also Diesel engine; Hydraulic turbine; Motor; Prime mover; Steam turbine; Wind power. The field structure of a generator establishes the magnetic flux needed for energy conversion. In small generators, permanent magnets can be used to provide the required magnetic field. In large machines, dc field windings are more economical and permit changes in the magnetic flux and output voltage. This allows control of the generated voltage, which is important in many applications. In dc generators the field structure must be stationary to permit a rotating mounting for the commutator and armature windings. However, since the field windings require low voltage and power and have only two lead wires, it is convenient to place the field on the rotating member in ac generators. See also Electric power generation; Electric rotating machinery; Windings in electric machinery. Machine that converts mechanical energy to electricity for transmission and distribution over power lines to domestic, commercial, and industrial customers. Generators also produce the electric power required for automobiles, aircraft, ships, and trains. The mechanical power for an electric generator is usually obtained from a rotating shaft and is equal to the shaft torque multiplied by the rotational, or angular, velocity (speed). The mechanical power may come from various sources: turbines powered by water, wind, steam, or gas; gasoline engines; or diesel engines. enerator, in electricity, machine used to change mechanical energy into electrical energy. It operates on the principle of electromagnetic induction, discovered (1831) by Michael Faraday. When a conductor passes through a magnetic field, a voltage is induced across the ends of the conductor. The generator is simply a mechanical arrangement for moving the conductor and leading the current produced by the voltage to an external circuit, where it actuates devices that require electricity. In the simplest form of generator the conductor is an open coil of wire rotating between the poles of a permanent magnet. During a single rotation, one side of the coil passes through the magnetic field first in one direction and then in the other, so that the induced current is alternating current (AC), moving first in one direction, then in the other. Each end of the coil is attached to a separate metal slip ring that rotates with the coil. Brushes that rest on the slip rings are attached to the external circuit. Thus the current flows from the coil to the slip rings, then through the brushes to the external circuit. In order to obtain direct current (DC), i.e., current that flows in only one direction, a commutator is used in place of slip rings. The commutator is a single slip ring split into left and right halves that are insulated from each other and are attached to opposite ends of the coil. It allows current to leave the generator through the brushes in only one direction. This current pulsates, going from no flow to maximum flow and back again to no flow. A practical DC generator, with many coils and with many segments in the commutator, gives a steadier current. There are also several magnets in a practical generator. In any generator, the whole assembly carrying the coils is called the armature, or rotor, while the stationary parts constitute the stator. Except in the case of the magneto, which uses permanent magnets, AC and DC generators use electromagnets. Field current for the electromagnets is most often DC from an external source. The term dynamo is often used for the DC generator; the generator in automotive applications is usually a dynamo. An AC generator is called an alternator. To ease various construction problems, alternators have a stationary armature and rotating electromagnets. Most alternators produce a polyphase AC, a complex type of current that provides a smoother power flow than does simple AC. By far the greatest amount of electricity for industrial and civilian use comes from large AC generators driven by steam turbines. In computer science, a generator is a special routine that can be used to control the iteration behaviour of a loop. A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values. However, instead of building an array containing all the values and returning them all at once, a generator yields the values one at a time, which requires less memory and allows the caller to get started processing the first few values immediately. In short, a generator looks like a function but behaves like an iterator. Generators first appeared in CLU (1975) [1] and are now available in Python and C#. (In CLU and C#, generators are called iterators.) Generators are usually invoked inside loops. The first time that a generator invocation is reached in a loop, an iterator object is created that encapsulates the state of the generator routine at its beginning, with arguments bound to the corresponding parameters. The generator's body is then executed in the context of that iterator until a special yield action is encountered; at that time, the value provided with the yield action is used as the value of the invocation expression. The next time the same generator invocation is reached in a subsequent iteration, the execution of the generator's body is resumed after the yield action, until yet another yield action is encountered. In addition to the yield action, execution of the generator body can also be terminated by a finish action, at which time the innermost loop enclosing the generator invocation is terminated. In the presence of generators, loop constructs of a language can be reduced into a single loop ... end loop construct; all the usual loop constructs can then be comfortably simulated by using suitable generators in the right way. An example Python generator: def countfrom(n): while True: yield n n += 1 # Example use: printing out the integers from 10 to 20. # Note that this iteration terminates normally, despite countfrom() being # written as an infinite loop. for i in countfrom(10): if i
@mvsrao (4365)
• India
9 Dec 06
could have given a synopsis & the original link(s) of this article ! the links are given in the first reply .
@mvsrao (4365)
• India
9 Dec 06
you mean the generator for electricity - pls see : howstuffworks.com and http://en.wikipedia.org/wiki/Electrical_generator